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Abstract

In relativistic Hamiltonians the two-nucleon interaction is expressed as a sum

of ṽij , the interaction in the Pij = 0 rest frame, and the “boost interaction”

δv(Pij) which depends upon the total momentum Pij and vanishes in the rest

frame. The δv can be regarded as a sum of four terms: δvRE, δvLC , δvTP

and δvQM ; the first three originate from the relativistic energy-momentum

relation, Lorentz contraction and Thomas precession, while the last is purely

quantum. The contributions of δvRE and δvLC have been previously calcu-

lated with the variational Monte Carlo method for 3H and 4He. In this brief

note we report the results of similar calculations for the contributions of δvTP

1



and δvQM . These are found to be rather small.
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Recently we reported [1] results of variational Monte Carlo calculations of 3H and 4He

with a relativistic Hamiltonian based on the work of Foldy [2], Krajcik and Foldy [3] and

Friar [4]. This Hamiltonian has the form:

H =
∑
i

[(
m2 + p2

i

)1/2
−m

]
+
∑
i<j

[ṽij + δv(Pij)] +
∑
i<j<k

Vijk, (1)

where pi label momenta of particles, and Pij = pi + pj is the total momentum of the pair

ij. The two-nucleon interaction ṽij is obtained by fitting the scattering data in the Pij = 0

frame. The boost interaction δv(Pij) is zero when Pij = 0, and is generally given by:

δv(Pij) = −
P 2
ij

8m2
ṽij +

1

8m2
[Pij · rijPij ·∇ij, ṽij] +

1

8m2
[(σi − σj)×Pij ·∇ij, ṽij] (2)

up to order P 2
ij/m

2. Only the first two terms of this δv(Pij) were considered in ref. [1].

The last term, having (σi − σj), does not have diagonal matrix elements in eigenstates of

S2 = (σi + σj)2. Hence it was neglected in [1]. The Urbana model VII of Vijk is used, and

its boost correction δVijk(Pijk) is neglected. This correction is zero for 3H in its rest frame,

and in 4He it is expected to contribute much less than the δv(Pij).

In the present work we calculate the expectation value of the (σi −σj) term in δv(Pij).

This term can couple the dominant two-nucleon T, S = 1, 0 and 0, 1 waves in the wave

function of 3H and 4He to the small P-waves having T, S = 1, 1 and 0, 0 respectively. The

ṽij has fourteen terms like those of the Urbana v14 interaction [5]. The first six of these have

operators (1,σi · σj, Sij)⊗ (1, τ i · τ j), and are denoted by ṽ6,ij:

ṽ6,ij = vc(rij) + vσ(rij)σi · σj + vt(rij)Sij

+ [vτ(rij) + vστ(rij)σi · σj + vtτ(rij)Sij] τ i · τ j. (3)

The ṽ6,ij gives > 98% of the 〈ṽij〉 in 3H and 4He, therefore we approximate the ṽij in the

(σi − σj) term of δv(Pij) by ṽ6,ij.

The commutator can be written as:

1

8m2
[(σi − σj)×Pij ·∇ij, ṽ6,ij] = δvTP(Pij) + δvQM(Pij), (4)

3



where

δvTP(Pij) =
1

8m2
(σi − σj)×Pij · (∇ij ṽ6,ij) , (5)

and δvQM(Pij) contains terms that come from the commutator of (σi − σj) with the spin

operators in ṽ6,ij. The δvTP(Pij) originates from the classical Thomas precession [6,7]. The

precession of the spin si in the frame moving with velocity Pij/2m is given by −∇ij ṽij ×

Pij/4m2 up to order 1/m2. Thus the Thomas precession potential for particle i is:

− 1

2
σi ·
∇ṽij ×Pij

4m2
=

1

8m2
σi ×Pij · (∇ij ṽij) . (6)

Both particles have same velocity due to their center of mass motion, but their accelerations

due to ṽij are equal and opposite. Therefore the Thomas precession potential for the particle

j is −σj ×Pij · (∇ij ṽij) /8m2, and together with (6) it makes up the δvTP(Pij). After some

algebra we obtain:

δvTP(Pij) =
1

8m2r

[(
v′c − v′σ + v′t + 3

vt
r

)
P · r× (σi − σj)

−i
(

2v′σ + v′t + 3
vt
r

)
(P · σi r · σj −P · σj r · σi)

]
+ τ i · τ j term, (7)

where v′x denotes ∂vx/∂r, the ij subscripts of r, P and vx are omitted for brevity, and the

τ i · τ j term has vτ , vστ and vtτ in place of vc, vσ and vt.

The δvQM(Pij) does not have a classical analogue; it is found to be:

δvQM(Pij) =
i

2m2
(vt − vσ) (P · σi σj ·∇−P · σj σi ·∇)

− 3i

4m2

vt
r2

P · r (σi · r σj ·∇− σj · r σi ·∇)

− 3i

4m2

vt
r2

(P · σi r · σj −P ·σj r · σi) r ·∇

+τ i · τ j terms (8)

from eq. (4).

It is convenient [7] to express δv(Pij) given by eq. (2) as:

δv(Pij) = δvRE(Pij) + δvLC(Pij) + δvTP(Pij) + δvQM(Pij). (9)
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Its first term:

δvRE(Pij) = −
P 2
ij ṽij

8m2
(10)

comes from the relativistic energy, and the second:

δvLC(Pij) =
1

8m2
Pij · rij Pij · (∇ij ṽij) (11)

from Lorentz contraction. The [Pij · rijPij ·∇ij, ṽij] can have terms in addition to those in

δvLC when ṽij depends upon the relative momentum pij . These terms are to be regarded as

a part of δvQM. However, they vanish when ṽij is approximated with ṽ6,ij.

The expectation values of δvTP(Pij) and δvQM(Pij) are calculated with the variational

wave function of ref. [1] using the Monte Carlo methods described in [1]. The results are

tabulated in table I along with others of interest from [1]. The contributions of δvTP and

δvQM are much smaller than those of δvRE and δvLC as expected. These contributions would

be exactly zero if there were no two-nucleon P-waves in these nuclei.

Stadler and Gross [8] have also estimated these contributions in 3H with a different

method and obtained similar results.

The authors would like to thank Dr. J. L. Friar for illuminating discussions. The work of

JLF and VRP is partly supported by the U.S. National Science Foundation via grant PHY–

89–21025, that of JC and RS was performed under the auspices of the U.S. Department of

Energy.
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TABLES

TABLE I. Expectation values in MeV

3H 4He

〈
∑
i

(m2 + p2
i )

1/2 −m〉 48.7(2) 105.0(6)

〈
∑
i<j

ṽij〉 -55.9(2) -127.4(5)

〈
∑
i<j<k

ṽijk〉 -1.21(2) -5.43(15)

〈
∑
i<j

δvRE(Pij)〉 0.23(2) 1.17(3)

〈
∑
i<j

δvLC(Pij)〉 0.10(1) 0.53(1)

〈
∑
i<j

δvTP (Pij)〉 0.016(2) 0.074(4)

〈
∑
i<j

δvQM (Pij)〉 -0.004(2) -0.014(4)

〈H〉 -8.07(3) -25.90(8)
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